If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-9x^2-2x+1=0
a = -9; b = -2; c = +1;
Δ = b2-4ac
Δ = -22-4·(-9)·1
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{10}}{2*-9}=\frac{2-2\sqrt{10}}{-18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{10}}{2*-9}=\frac{2+2\sqrt{10}}{-18} $
| 3x+4x-3=x+7 | | 16=0.5*m*16 | | 5x+4=2(x-5) | | 1.5=d0.8 | | 8c-9=1c+7 | | 3x+16=10x-6 | | 111+(7x-1)=180 | | 1.5x^2-2x-1=0 | | 3(2x-7)-x=5(x-1)+16(2x+3) | | 3/5x+1/2=7/16 | | (x^2+4x-12)(x-3)=0 | | 4c+9c=-13 | | 9r+r+3r-4r-3r=12 | | X=500x^-2 | | 16=1/2*m*16 | | -8g+4g+17g+-17g+-13g=-17g | | 100-b^2=80 | | -5/2x=3/4x-1/6 | | 2.50×1.78k=21.19 | | 4/3x-1/6=7/12 | | 3d+3d+3d=18 | | 5x-14=8×+4 | | 6t-4t-t=18 | | 7+6r=-7(4r-1) | | (x-4)3/2=-8 | | 19u+-18u=14 | | 4x-(2+x)=3x-2 | | 8-5k=8-7k | | 6j+j-5j+4j=18 | | 1n-16=4n+9 | | 2x-4/3+9=81 | | 2y+44=6y |